Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer.

نویسندگان

  • Hung Huynh
  • Ching Ching Melissa Teo
  • Khee Chee Soo
چکیده

Ovarian cancer is the leading cause of death from gynecologic cancer. Often, the disease has spread beyond the ovary to involve the peritoneal cavity and causes ascites. Whereas mammalian target of rapamycin (mTOR) functions to regulate protein translation, cell cycle progression, and metastasis, vascular endothelial growth factor promotes tumor angiogenesis, ascites formation, and metastasis in ovarian cancer. In this study, an i.p. model of human ovarian cancer was used to determine the antitumor activity of rapamycin, bevacizumab, and rapamycin plus bevacizumab (BEV/RAPA). We report that administration of rapamycin, bevacizumab, and BEV/RAPA in mice bearing peritoneal OV-90 ovarian carcinoma resulted in 74.6%, 82.4%, and 93.3% reduction in i.p. tumor burden, respectively. BEV/RAPA-induced reduction in microvessel density and inhibition of cell proliferation were associated with significant reduction in hypoxia-inducible factor-1alpha and cyclin D1 and inactivation of downstream targets of mTOR, p70S6 kinase, S6R, and 4E-binding protein 1. BEV/RAPA treatment was not only able to prolong life of i.p. mice but also more effective than rapamycin and bevacizumab to prevent the development of peritoneal carcinomatosis in adjuvant setting and reverse ascites accumulation in heavy peritoneal disease. Our data indicate that simultaneous inhibition of the vascular endothelial growth factor receptor and mTOR pathways with BEV/RAPA or their analogues may represent a novel approach for prevention of metastasis, recurrence, and treatment of ovarian cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AAV-mediated persistent bevacizumab therapy suppresses tumor growth of ovarian cancer.

RATIONALE Anti-angiogenesis therapies such as bevacizumab, the monoclonal antibody to vascular endothelial growth factor (VEGF), have been used against ovarian cancer, but transient and low peritoneal drug levels are likely a factor in treatment failure. We hypothesized that a single administration of adeno-associated virus (AAV)-mediated intraperitoneal expression of bevacizumab would direct p...

متن کامل

Modeling and simulation of ovarian cancer and tumor growth and spread in different stages of ovarian cancer according to the TNM system

Introduction: Ovarian cancer is caused by malignant changes in the cells of the ovary. In various studies, cancer has been regarded as a biological system that has a set of characteristics; therefore, presenting a model of this system can considerably help to study and predict the phenomena related to the growth and spread of cancer. This study attempted to model and simulate the growth and spr...

متن کامل

Modeling and simulation of ovarian cancer and tumor growth and spread in different stages of ovarian cancer according to the TNM system

Introduction: Ovarian cancer is caused by malignant changes in the cells of the ovary. In various studies, cancer has been regarded as a biological system that has a set of characteristics; therefore, presenting a model of this system can considerably help to study and predict the phenomena related to the growth and spread of cancer. This study attempted to model and simulate the growth and spr...

متن کامل

Human Wharton’s jelly mesenchymal stem cells-derived secretome could inhibit breast cancer growth in vitro and in vivo

Objective(s): Controversial results have been reported regarding the anti-tumor properties of extracellular vesicles derived from mesenchymal stem cells (MSCs). The present study was conducted to evaluate whether secretome derived from Human Wharton’s jelly mesenchymal stem cells (hWJMSCs) may stimulate or inhibit breast cancer growth in vitro and in vivo.<st...

متن کامل

Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2.

Vascular endothelial growth factor (VEGF) plays a vital role in tumor angiogenesis. VEGF is produced by human melanomas, and the VEGF receptor 2 (VEGFR-2) is expressed by most advanced stage melanomas, suggesting the possibility of an autocrine loop. Here, we show that bevacizumab, an anti-VEGF antibody, inhibits proliferation of VEGFR-2(+) melanoma cell lines by an average of 41%; however, it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2007